Validate relay behaviour and de-risk novel protection schemes.
Gain confidence in the performance of critical projects with HIL testing.
Perform closed-loop testing via communication protocols.
Simulate and stream IEC/IEEE 60255-118-1 synchrophasors in real time.
Improve the performance of distribution automation systems and DERMS.
Achieve superior resilience through HIL testing of microgrid protection and control.
Test renewable power plant controllers (PPCs) in a closed loop, including communication delays.
Test controls in a closed loop with simulated high-frequency switching circuits.
Test DERs, motors, loads, and other real power hardware in a controlled environment.
Prevent and survive cyber events via thorough real-time testing.
Validate the performance of novel technologies and improve operator confidence.
Start here to learn about real time simulation and discover the technology that makes hardware-in-the-loop testing possible.
NovaCor™: the powerful, custom-developed hardware platform at the heart of the simulator.
Exchange data with external devices in real time through Ethernet and Network Interface Card.
The most diverse, robust, and accurate real time power system modelling library available.
RSCAD® allows the configuration, execution, and analysis of real-time simulations.
Learn about EMT simulation, the Dommel algorithm, and multi-rate simulation.
Learn how real time simulation supports power system innovation around the globe.
Join our mailing list to get everything “RTDS” in one place: from webinar announcements, industry news, and event details.
Technology updates, conferences, training courses and webinars, and other news.
See what events are on deck at RTDS Technologies.
Check out our schedule for training at our facility in Winnipeg, Canada.
RTDS Technologies changed the power industry forever by introducing the world’s first fully digital real-time power system simulator.
Leaders in their craft & main drivers of our innovation – simulating the grid of tomorrow.
Discover opportunities to join the world-class team at RTDS Technologies.
Easy access to technical papers, product & application information, and more.
Hands-on training opportunities and unparalleled user support.
Accessible, comprehensive equipment maintenance to eliminate downtime.
Video training resources for RTDS Simulator users.
Easy access to technical papers, product & application information, and more.
Hands-on training opportunities and unparalleled user support.
Accessible, comprehensive equipment maintenance to eliminate downtime.
Access our client area with your credentials here.
BC Hydro is the third-largest utility in Canada with major hydro-electric generation assets in the northern Peace and southeastern Columbia regions of the province. The generation is far from the bulk of the demand located in the Vancouver area in the south-west corner. The main transmission system consists of long 500 kV lines. BC Hydro serves over 95% of the province’s population, with a service area stretching from the U.S. border to the 59th parallel — over 1,300 km north. This area is uniquely diverse in terms of geography, culture, and power system infrastructure, including many remote communities.
As a leading utility, BC Hydro continually assesses the security and reliability of their power system protection and control. Their RTDS® Simulator, a powerful NovaCor processing unit with both conventional and communications-based I/O options, has supported their efforts in upgrading protection on 500 kV lines. This case study focuses on recent work in upgrading generator and transformer protection. Recent transformer protection upgrades took place at Masset substation, where diesel generators serve a thriving community on the remote, wild, and beautiful islands of Haida Gwaii — the traditional territory of the Haida Nation.
Historically, BC Hydro has tested generator protection using relay test sets (open-loop testing tools) and steady-state signals. However, the dynamics of the generator, governor, and exciter are not captured using this method. Transitioning the testing to the real-time simulation environment allows for the detailed dynamic representation of the network, the machine, and its controls. The new closed-loop testing process also supports the commissioning process and operations.
Functions tested with the RTDS Simulator include:
Generator protection
Transformer protection
Generator protection misoperation:
A diesel generator was tripping on the differential element due to severe CT saturation on transformer energization. A supervised differential blocking scheme and the relay’s High-Security-Mode (HSM) were tested on the RTDS Simulator to solve the issue.
Transformer protection misoperation:
An already energized transformer was saturating during the energization of another transformer. This is known as sympathetic inrush and the sympathetic transformer inrush resulted in the mis-operation of the differential element of a relay protecting the two transformers. Engineers reversed the polarity of one set of transformer CTs and tested the successful modification on the RTDS Simulator.
Phase domain synchronous machine (PSDM) model: The RTDS Simulator’s RSCAD® software has several machine models available, including the PDSM used by BC Hydro for their generator protection testing. This special PDSM model, designed for testing stator-ground fault protection, allows the user to simulate turn-turn, phasephase, phase-ground, and field winding faults.
Validation: Accurate real-time simulation results — and in turn, dependable hardware-in-the-loop tests — depend on good data. Here, BC Hydro validates results from the RTDS® Simulator against those from an established non-realtime system model, as well as real field measurements. This simulation seeks to replicate results from a historical system event — failure of a high-voltage line reactor. Plots show currents on the 500 kV line, which connects a hydroelectric dam to a major substation.
Having successfully applied the RTDS Simulator in their protection planning department, BC Hydro will continue testing every protection element in a controlled laboratory environment prior to generator and transformer relay deployment. During commissioning, selected COMTRADE event files are played back to the relay, and field results are sent to the protection engineer for analysis and approval.
Real-time simulation provides BC Hydro’s engineers with a fast, flexible way to understand various power system contingencies and their effect on protective relays — and a testbed for validating modified settings and configurations.
© 2023 RTDS Technologies Inc AMETEK. All Rights Reserved.