Validate relay behaviour and de-risk novel protection schemes.
Gain confidence in the performance of critical projects with HIL testing.
Perform closed-loop testing via communication protocols.
Simulate and stream IEC/IEEE 60255-118-1 synchrophasors in real time.
Improve the performance of distribution automation systems and DERMS.
Achieve superior resilience through HIL testing of microgrid protection and control.
Test renewable power plant controllers (PPCs) in a closed loop, including communication delays.
Test controls in a closed loop with simulated high-frequency switching circuits.
Test DERs, motors, loads, and other real power hardware in a controlled environment.
Prevent and survive cyber events via thorough real-time testing.
Validate the performance of novel technologies and improve operator confidence.
Start here to learn about real time simulation and discover the technology that makes hardware-in-the-loop testing possible.
NovaCor™: the powerful, custom-developed hardware platform at the heart of the simulator.
Exchange data with external devices in real time through Ethernet and Network Interface Card.
The most diverse, robust, and accurate real time power system modelling library available.
RSCAD® allows the configuration, execution, and analysis of real-time simulations.
Learn about EMT simulation, the Dommel algorithm, and multi-rate simulation.
Learn how real time simulation supports power system innovation around the globe.
Join our mailing list to get everything “RTDS” in one place: from webinar announcements, industry news, and event details.
Technology updates, conferences, training courses and webinars, and other news.
See what events are on deck at RTDS Technologies.
Check out our schedule for training at our facility in Winnipeg, Canada.
RTDS Technologies changed the power industry forever by introducing the world’s first fully digital real-time power system simulator.
Leaders in their craft & main drivers of our innovation – simulating the grid of tomorrow.
Discover opportunities to join the world-class team at RTDS Technologies.
Easy access to technical papers, product & application information, and more.
Hands-on training opportunities and unparalleled user support.
Accessible, comprehensive equipment maintenance to eliminate downtime.
Video training resources for RTDS Simulator users.
Easy access to technical papers, product & application information, and more.
Hands-on training opportunities and unparalleled user support.
Accessible, comprehensive equipment maintenance to eliminate downtime.
Access our client area with your credentials here.
The Johan Sverdrup project, owned and operated by Equinor, is the world’s first multi-vendor HVDC scheme feeding an islanded offshore AC power system. The project consists of five oil and gas platforms, located on the Norwegian continental shelf, fed by two parallel HVDC links from different manufacturers. Hitachi Energy supplied the first VSC-HVDC link commissioned in 2018. The addition of a second MMC-HVDC link supplied by Siemens completed the project, but introduced unique technical challenges and vendor confidentiality requirement-related obstacles.
Equinor called on RTE International, a subsidiary of Europe’s largest TSO, to lend their expertise to the project. RTE International provides consulting and engineering services, strengthened by their unique experience with multi-vendor / multi-in-feed HVDC systems and real-time simulation.
The involvement of a third party with real-time simulation expertise facilitated HIL testing to ensure interoperability of both vendors’ controls while protecting IP.
As a two-phase multi-vendor project, Johan Sverdrup presented unique technical challenges. The two HVDC systems were developed with limited knowledge about each other, and adverse interactions between the two links were likely to occur. To address this risk, Equinor chose to include control and protection replica hardware in the project. After receiving these replicas at RTE International’s lab, experts connected them to a network simulated on the RTDS® Simulator for hardware-in-the-loop (HIL) testing—to ensure secure operation of the scheme under all operating conditions.
Additionally, to facilitate interoperability of the two HVDC links and stable control of the entire Johan Sverdrup power network, Kongsberg Maritime Technologies developed a Power Dispatch Control System. This control system includes a Power Management System (PMS), which is responsible for secondary load sharing between the HVDC links relative to their available capacity, among other functions. A replica of the PMS is also included in the HIL testbed. The ability to test the hardware with the RTDS Simulator was valuable, as no detailed offline simulation model for the PMS is presently available.
Testing the replica Power Management System, developed for high-level coordination of the two HVDC links, is a key aspect of the de-risking and validation process prior to commissioning the second link.
RTE International’s real-time simulation laboratory houses the control and protection replicas from Hitachi Energy (phase 1 link), Siemens (phase 2 link), and Kongsberg (PMS). The Hitachi and Siemens replicas were installed in separate rooms with secured access, with a third room dedicated to control.
The following events were studied:
Commissioning tests are executed for both HVDC links using the replica controls, including verification of modifications to the original link to
accommodate parallel operation with the new link. Tests included the standalone operation of each link, as well as verification of each link’s interface to the PMS.
Next, Parallel operation is then tested, where both replicas are simultaneously connected to the RTDS Simulator, including:
For the Johan Sverdrup project, experts utilized both offline and real-time EMT simulation throughout the project timeline. Benchmarking the results from HIL testing of the replicas against an offline simulation containing the vendor control models is an important part of validation—results matched very well.
HIL testing with vendor control replicas led to modifications in both the HVDC and PMS controls, which improved the overall dynamic performance of the Johan Sverdrup project.
Replica testing provides unique insights into interactions and misoperations which may otherwise be difficult to identify, making it a key part of the study and testing process for HVDC projects. To reduce risk and increase confidence in the secure parallel operation of the Johan Sverdrup project, the RTDS Simulator was critical.
© 2023 RTDS Technologies Inc AMETEK. All Rights Reserved.