Validate relay behaviour and de-risk novel protection schemes.
Gain confidence in the performance of critical projects with HIL testing.
Perform closed-loop testing via communication protocols.
Simulate and stream IEC/IEEE 60255-118-1 synchrophasors in real time.
Improve the performance of distribution automation systems and DERMS.
Achieve superior resilience through HIL testing of microgrid protection and control.
Test renewable power plant controllers (PPCs) in a closed loop, including communication delays.
Test controls in a closed loop with simulated high-frequency switching circuits.
Test DERs, motors, loads, and other real power hardware in a controlled environment.
Prevent and survive cyber events via thorough real-time testing.
Validate the performance of novel technologies and improve operator confidence.
Start here to learn about real time simulation and discover the technology that makes hardware-in-the-loop testing possible.
NovaCor™: the powerful, custom-developed hardware platform at the heart of the simulator.
Exchange data with external devices in real time through Ethernet and Network Interface Card.
The most diverse, robust, and accurate real time power system modelling library available.
RSCAD® allows the configuration, execution, and analysis of real-time simulations.
Learn about EMT simulation, the Dommel algorithm, and multi-rate simulation.
Learn how real time simulation supports power system innovation around the globe.
Join our mailing list to get everything “RTDS” in one place: from webinar announcements, industry news, and event details.
Technology updates, conferences, training courses and webinars, and other news.
See what events are on deck at RTDS Technologies.
Check out our schedule for training at our facility in Winnipeg, Canada.
RTDS Technologies changed the power industry forever by introducing the world’s first fully digital real-time power system simulator.
Leaders in their craft & main drivers of our innovation – simulating the grid of tomorrow.
Discover opportunities to join the world-class team at RTDS Technologies.
Easy access to technical papers, product & application information, and more.
Hands-on training opportunities and unparalleled user support.
Accessible, comprehensive equipment maintenance to eliminate downtime.
Video training resources for RTDS Simulator users.
Easy access to technical papers, product & application information, and more.
Hands-on training opportunities and unparalleled user support.
Accessible, comprehensive equipment maintenance to eliminate downtime.
Access our client area with your credentials here.
Microgrids require multiple tiers of control and protection to function as both a seamless part of the utility grid and as resilient independent networks capable of supplying local critical loads.
The RTDS Simulator allows engineers to model the behaviour of macro- and microgrids over a large frequency range in real time. This allows real microgrid control and protection, as well as physical DERs and their converters, to be connected to the simulated network and tested to significantly reduce risk and improve performance prior to deployment.
Combining HIL and PHIL testing creates a powerful microgrid testbed capable of physically connecting the simulated network, controllers requiring low-level or Ethernet-based signals, protection requiring secondary-level signals, and real power hardware exchanging real and reactive power with the simulated environment.
For more information on our models, please contact us or search our Knowledge Base, coming soon.
Solar PV array, wind turbine, PEM fuel cell, Lithium Ion energy storage, reactive power compensation, dynamic loads, wound rotor / doubly fed induction machine, squirrel cage induction machine, permanent magnet synchronous machine.
2- and 3-level VSCs switching in the 50+ kHz range, custom topology VSCs, average VSC models (less computationally intensive).
Freely configurable controls components allow the modeling of:
P&Q droop control, DQ-current control, MPPT, pitch angle control, sync check, startup/shutdown, governor/exciter models. Control systems developed in MATLAB/SIMULINK can be directly imported.
High-speed TCP/UDP, DNP3, IEC 60870-5-104, IEC 61850-9-2LE Sampled Values, IEC 61850 GOOSE Messaging, IEEE C37.118 for synchrophasor data.
Use DNP3, IEC 60870-5-104, and more to connect the simulated network to high-level controls and management systems including DMS and SCADA. Optimize power flow and market participation and quantify performance prior to energization.
Test centralized microgrid controllers against functional requirements in real time. De-risk against misoperation and instability during planned and unplanned disconnection and improve voltage and frequency resilience in contingency scenarios.
Mitigate negative interactions between parallel-connected converters using real time, instantaneous results. Combine virtual and physical DER protection and control in a testbed to comprehensively assess performance over a wide range of conditions.
© 2023 RTDS Technologies Inc AMETEK. All Rights Reserved.