Register Now: User Spotlight Series 2.0

Share on facebook
Share on twitter
Share on linkedin

Learn from RTDS Simulator and RSCAD users around the globe

What to Expect

It’s back! The virtual User Spotlight Series is your opportunity to learn from people who use the RTDS Simulator and RSCAD. Hear success stories, learn about their challenges, and explore new applications.

The User Spotlight Series 2.0 features…

  • New webinars every other month
  • Two 20-minute presentations per webinar, each with a live Q&A
  • Free registration
  • Door prizes for attendees

All webinars will be recorded and available on-demand for everyone who registers. Stay tuned for registration details by bookmarking this page and checking back or by signing up for our newsletter.

Still curious? Learn more about our inaugural User Spotlight Series here! 

Event Details

Dates (subject to change):

  • November 24, 2021
  • January 26, 2022
  • March 30, 2022
  • May 25, 2022
  • July 27, 2022
  • September 28, 2022

9:00 AM
Time zone: Central Time (Winnipeg)

Episode 2: January 26, 2022

Topic: Grid-Supporting Battery Energy Storage System - Modelling and Simulation in RTDS: An Australian Case Study

With the University of New South Wales (UNSW)

Abstract: The combination of increasing penetration of inverter-based resources (IBRs) along with decreasing system strength, amplifies stability issues of IBRs and the power system to which they connect. Under these conditions, traditional, resonance and converter-driven stability are found to be affected. The Australian National Electricity Market (NEM) is not the exemption, and it has experienced operational manifestations of low system strength conditions.

The remote location of several areas of the NEM, the lack of nearby synchronous generators and the lack of strong transmission connections are some of the factors that, when combined, result in a very weak area. Grid-supporting battery energy storage systems (BESSs) are among the prominent solutions to strengthen an area while supporting the increased growth of renewable generation. Real-time simulations and hardware-in-the-loop testing enhances the approach.

This presentation will cover:

  • The main technical challenges faced in Broken Hill, a weak and remote area of the NEM, due to the high penetration of IBRs and the lack of system strength support.
  • The proposed mitigation measures including a grid-supporting BESS with virtual synchronous machine emulation.
  • Analysis and findings of the proposed solution based on the RTDS simulator.
  • Real-time controller hardware-in-the-loop co-simulation to test and validate the proposed solution under several scenarios.


Felipe Arraño-Vargas is a PhD candidate at the School of Electrical Engineering and Telecommunications at the University of New South Wales (UNSW) in Sydney, Australia. His research interests include the development, modeling and simulation of inverter-based resources and synthetic grids in real-time digital simulators.

Georgios Konstantinou is a Senior Lecturer in Energy Systems with the School of Electrical Engineering and Telecommunications at the University of New South Wales (UNSW) in Sydney, Australia. He is also the research and teaching coordinator at the university’s real-time digital simulation laboratory (RTS@UNSW). Georgios research covers the areas of power electronics and grid integration of renewable energy, energy storage and HVDC systems.

Topic: Development of a Microgrid Controller for a Remote Off-Grid Power System in Northern Canada and Its Evaluation Using Hardware-in-the-Loop Simulations.

With the University of Manitoba

Abstract: Solar photovoltaic (PV) generation combined with energy storage is emerging as a feasible renewable retrofit to the solely diesel-based remote off-grid power systems in northern Canada to reduce emissions and other environmental risks associated with diesel transportation. The integration of inverter-interfaced Distributed Energy Resources (DERs) along with conventional generation resources significantly increases the system complexity requiring complex control algorithms. Advanced energy management algorithms are needed to maximize the economic and environmental benefits of such systems. Therefore, proper testing of microgrid control strategies before field deployment is becoming an important need.

This work develops a hierarchical microgrid controller consisting of an energy management system deploying a model predictive control framework and a power management system. The functionality of the proposed microgrid controller is evaluated on a controller hardware in the loop (CHIL) simulation platform. The structure of the testbed includes a real-time digital simulator (RTDS®), SEL RTAC-3350 digital controller, and a desktop computer running the energy management system implemented in MATLAB®.  The development and coordination of the hierarchical control levels, and the integration of the IEC-61850 based communication for exchange of measurements, status signals and control commands will be discussed.


Mo’ath Farraj received the B.Sc. (Eng.) degree in Electrical Engineering from Philadelphia University, Jordan, in 2019. He is currently working toward the MSc degree at the University of Manitoba, Manitoba, Canada.

Episode 1: November 24, 2021

Topic: Hybrid testing of power system protection communication over wireless 5G

With VTT Technical Research Centre of Finland

Topic: Investigating Inverter-Based Resources Impacts on the Transmission Line Protection via Hardware-in-the-loop Simulation

With Quanta Technology

Abstract: In the transition towards carbon-neutral smart grids, the role of ICT infrastructure is crucial, and exploiting wireless 5G may bring flexibility and significant cost savings in both installation and maintenance. Furthermore, power systems would gain access to 5G services including network slicing, massive IoT, and edge computing.

Testing of wireless communication for power systems applications demands a realistic hybrid pilot environment. In this presentation, we discuss how we upscaled our previous protection communication test setup to provide a novel pilot environment for testing wireless 5G technology on protection communication. Protection was chosen due to its most rigorous QoS requirements compared to other power system applications.

The pilot environment consisted of a closed-loop CHIL simulation on RTDS enhanced with access to a 5G test network and commercial networks. The devices under test were relays and merging units. The switches formed a natural coupling point, through which the data traffic was routed to the desired wireless network. Supplementary video and sensor data traffic were generated to load the connection and to test how different traffic profiles affect the critical communication.

Three diverse and latency-critical protection applications were tested in the pilot environment: virtual fault passage indicator, line differential, and intertrip protection. 


Petra Raussi received her M.Sc. in Electrical Engineering from LUT University, Lappeenranta, Finland in 2018. She is currently a Research Scientist at VTT Technical Research Centre of Finland and responsible for the IntelligentEnergy testbed power system laboratory. Her research interests include power system communication and automation, 5G and beyond for critical data exchange, distributed control, and real-time systems. She is also currently a doctoral candidate at the Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, Espoo, Finland. Her doctoral research focuses on providing new information on the impact of the ICT layer of smart grids on power systems.

Heli Kokkoniemi-Tarkkanen received her M.Sc. majoring in Applied Mathematics and Computer Science from the University of Jyväskylä, Finland in 1995. Since 1992, she has been working at VTT Technical Research Centre of Finland in several positions, currently as a Senior Scientist. She has over 28 years of experience in commercial, military, and research projects covering various aspects of wireless communication from radio wave propagation modelling and network simulation to early-phase product development. In recent years, she has been focusing on QoS, latency, and reliability aspects by piloting and testing 5G services in new mission-critical vertical use cases such as protection and control of smart energy grids and harbor automation.

Abstract: Driven by policy changes, renewable energy is poised for an explosive growth in the recent decade. As one of the key forms of renewable energy, inverter-based resources (IBRs) accounts for a significant portion of the current and future renewable generation capacity. Controlled by fast micro-processors, the fault responses of these IBRs are largely dictated by the control algorithms and are fundamentally different from conventional synchronous generators. 

Hardware-in-the-loop (HIL) simulation, commonly viewed as a robust tool for protection setting prototyping and testing, is used in this paper to investigate the impact of a wind farm, with type-4 full converter wind turbines, on the protection of a 345 kV transmission line in Texas, United States. The hosting transmission system as well as the wind farm are modeled in a real-time digital simulation (RTDS) system, and the physical line protection relays are interfaced with RTDS to perform a HIL simulation. 

In this paper, two important topics are discussed in great details: (1) RTDS wind farm IBR model development and validation against vendor PSCAD model, and (2) IBR impacts on distance protection and current differential protection. In addition to the aforementioned technical challenges and assessments, the workflow and technical know-how presented in this paper also serves as a valuable application tutorial for any IBR related HIL testing with RTDS system.


Zheyuan Cheng, SENIOR ENGINEER, Protection & Control with Quanta Technology, received his PhD in Electrical Engineering from North Carolina State University in 2020 and his BS degree in electrical engineering from Nanjing University of Aeronautics and Astronautics in 2015. He has been working on renewable distributed energy resource control related research and industry projects since 2016. His areas of expertise include distributed energy resources protection and control.

Srinidhi Narayanan, ENGINEER III, Protection with Quanta Technology, graduated with a master’s degree in Electrical Power Systems Engineering from NC State University in 2021. The focus areas of her master’s degree included power system protection, transient analysis, and communication and SCADA systems. She has also completed a capstone project as a part of her graduate program, called “Design of Protection Scheme for an Inverter-Based Microgrid Circuit,” which was sponsored by Duke Energy. Srinidhi has more than 2 years of experience in the electrical power systems industry.

Juergen Holbach, EXECUTIVE ADVISOR, Protection and Control, Senior Director of Automation and Testing with Quanta Technology, has more than 25 years of experience designing and applying protective relaying. An IEEE member and chairman, he has published over a dozen papers and holds three patents. In 2009, Juergen received the Walter A. Elmore Best Paper Award from the Georgia Tech Relay Conference. Juergen’s areas of expertise include automation and protection, transmission protection, real-time digital simulator (RTDS) testing, and International Electrotechnical Commission (IEC) 61850 compliance.