This page shows all available news articles. Are you interested in something specific?

  • Superstep

    June 4, 2018

    The all-new alternative for system equivalents –
    efficient and detailed simulation of large scale networks

    For over a decade, the RTDS Simulator has enabled users to simulate power electronics in small timestep subnetworks, which run together with the main timestep simulation. Now, in 2018, multi-rate simulation with the RTDS Simulator is more powerful and flexible than ever before. RTDS Technologies is thrilled to introduce Superstep – the all-new tool allowing users to simulate a large portion of the network with a larger timestep, running together with the main simulation.

    Superstep offers an alternative approach to using a system equivalent to model a large portion of the network. Superstep is significantly more powerful than a system equivalent: it retains the detail of EMT simulation, allows the user to model the system’s control elements, and represents system frequency deviations. Rather than a multi-domain or hybrid simulation, Superstep is a robust, numerically-stable EMT simulation – the most powerful and accurate way to represent large networks.

    Providing the detail that engineers need.

    Superstep maintains EMT simulation for the entire network, providing the user with critical detail (such as high-frequency transients) that cannot be represented with a phasor-based solution.

    Saving the time that engineers don’t have.

    Superstep eliminates the often complex and resource-intensive process of determining where equivalents are appropriate and reducing the network with sufficient accuracy.

    Reducing the institution’s investment.

    Superstep’s timestep means it can simulate a larger network with fewer hardware resources, significantly reducing the cost required to represent a large scale network.

    The Superstep advantage


    Use of a larger simulation timestep significantly increases the modelling capabilities of the RTDS Simulator hardware. The user defines the portion of the network they want to run using Superstep by placing those components in a hierarchy box.

    Each Superstep hierarchy box can simultaneously run:

    A network solution with hundreds of power system nodes

    High densities of power system components (transformers, lines, machines, etc.)

    Controls components

    For utilities or other users attempting to simulate large transmission networks like the one shown below, Superstep can make a large difference in the amount of simulation hardware required to represent the system while still providing high-fidelity EMT simulation for the entire network.



    A detailed look at Superstep


    Components to be simulated using the Superstep are placed inside a special Superstep hierarchy box. This box runs at a timestep which is an integer multiple of the main simulation timestep – it can be 2x, 3x, 4x, or 5x the main timestep.

    The Superstep network portion runs in parallel with the main simulation on its own core of the NovaCor hardware. The Superstep network solution, power system components, and controls are all simulated together on the same core.

    Because Superstep is intended for the modeling of network equivalents, switching models (such as breakers, faults, and converters) and some non-linear components (such as saturation models for transformers) are not available for use in Superstep. Unsupported components will turn red on the Draft canvas if they are placed in the Superstep hierarchy box.

    Multiple Superstep boxes can be run on different cores of a chassis and can be interconnected to one another, or to the main timestep network, using transmission lines.

    We have so much more to tell you


    We would love to answer any questions you have about Superstep. Drop us a line using this form and one of our experts will get back to you with more information right away.

    reCAPTCHA is required.
    RTDS Technologies Inc.
  • Introductory Training Course in USA

    May 30, 2018


    We are excited to be bringing our popular RTDS Simulator Introductory Training Course to the USA! Join us in July for our 5-day course that focuses on the basic use of the RTDS Simulator’s hardware and software. This hands-on course is led by our industry experts from RTDS Technologies and Nayak Corporation. By the end of this course participants will be able to assemble and run simple power systems simulation cases in RSCAD, be familiar with the I/O features of the RTDS Simulator, as well as, connect a physical device to the RTDS Simulator for closed-loop testing!

    Want more information? Head over to Training Courses page for more information or to register!


    We’d love to hear from you! Is there a topic that you’d like to see covered in one of our Advanced Applications courses? Let us know!

    Complete this quick survey!

    RTDS Technologies Inc.
  • 2018 European UGM

    May 29, 2018

    Abstracts now being accepted!

    We are excited to be bringing the 2018 User’s Group Meeting to Belgium!
    Join us October 10 & 11 at Energyville in Genk, Belgium for this can’t-miss event!

    We’re looking for RTDS Simulator users to share their work, experiences and accomplishments at this year’s User’s Group Meeting! If you have a project that the RTDS Simulator has played a key role in, we’d love to hear about it! Your participation not only help us as we continually develop new features and technologies, but it helps other users and inspires them to explore new applications!

    Interested? Email christine@rtds.com to submit your abstract! All abstracts should be a brief, one or two paragraphs, describing the presentation. There is no paper requested. In addition to the abstract, please send a colour photograph and a brief biography. This information will be published in the event program. 

    Visit our Event Page for more information or to register!

    2016 European UGM Presentations

    The National HVDC Centre: Overview of the National HVDC Centre and the Caithness-Moray HVDC project
    Siemens: Use of RTDS at Siemens AG HVDC / FACTS
    PNDC: Validating a Wide Area Grid Frequency Control System using P-HiL
    Delft University of Technology: Fault Anticipation in Distribution Networks by RTDS
    University of Strathclyde: Real-time Multi-rate Co-simulation for Power System Studies
    University of Strathclyde:  Studies of dynamic interactions in hybrid ac-dc grid under different fault conditions using real time digital simulation
    University of Strathclyde: Realistic communications emulation for real-time power system simulation
    GE Grid Solutions: Development and Implementation of Test Systems for Protection Schemes using the RTDS Simulator
    Aalborg University:  Design and Analysis of Harmonic Compensation for Wind Power Plants using RTDS
    Cardiff University: Frequency Support from HVDC systems to AC grids modelled using RTDS
    Cardiff University: Subsynchronous Resonance testing and damping in an AC/DC network using real-time hardware-in-the-loop framework
    Technical University of Denmark: Hardware-in-the-loop (HIL) Test of Demand as Frequency Controlled Reserve (DFR)
    Clemson University: Real-Time Simulation and Modern Power System Operational Studies

    RTDS Technologies Inc.
  • Hot Topic: Average Models for Distributed & Renewable Energy Simulation

    April 27, 2018

    Average Models for Distributed & Renewable Energy Simulation

    Power electronic based distributed energy resources such as wind, PV, fuel cells and energy storage are increasingly being integrated in distribution grid systems. Small simulation time-steps (< 4µsecs) are required to accurately model the high switching frequency transients in modern power converter circuits. Detailed modelling of the switching topology in power electronic converters for renewable generation require increased computation demand and place a limitation on the size of the power system that can be simulated.

    For certain applications, such as the design of smart grid /microgrid control systems at the distribution level, the switched topology model of the power converters are not required in the simulation model and can be replaced with dynamic average models.  In the RTDS Distribution Mode, the time-step is increased to allow for modeling large power systems. The increased distribution mode time-step is too large to simulate the high switching frequency transients of converter models. Dynamic models that represent the control dynamics and terminal AC and DC voltage-current relationships with sufficient accuracy and reduced computational resources are required for distribution applications.

    Dynamic average value models use circuit elements and dependent sources to represent the voltage and current relationship on the AC and DC sides with the same control circuit as the switched converter model but neglect the firing pulse generation and switching transients. Large simulation time steps and an increased network size can be simulated with reduced computation burden.

    Available models for distributed resource simulation with reduced computation burden in the RTDS library are:

    • Figure 1: Dynamic PQ sources provide current injections based on given setpoints
    • Figure 2: Single and Three phase average models to interface DC sources (PV, Battery)
    • Figure 3: Three phase average models to interface AC sources (DFIG, PMSM).
    Average Models - Figure 1

    Figure 1: Single and Three Phase Injection Model

    Average Models - Figure 2

    Figure 2: Single and Three Phase Average Models for DC sources.

    AverageModels-Figure 3

    Figure 3: Three Phase Average Models for AC sources.

    The latest average models are available in RSCADv5.003.3 and higher.  A Draft library search using keyword average will display the available components.

    For simulation cases using these models, please email support@rtds.com

    Author: Onyi Nzimako, April 2018

    RTDS Technologies Inc.
  • Team RTDS Takes 1st Place at MYM2018!

    April 5, 2018

    Team RTDS wins 1st Place at the University of Manitoba’s Make Your Move Challenge!


    For the second consecutive year, RTDS Technologies joined the University of Manitoba’s Make Your Move challenge organised by WISE Kid-Netic Energy. Sixty grade 8 girls gathered at the University of Manitoba Engineering Atrium to design a device which will help a person with less mobility in their hands to grasp, let go, and move objects from one location to another, while also extending their reach by at least 30cm. Each team was mentored by a local female engineer and our Udeesha Samarasekera mentored the RTDS team of girls from Samuel Burland School! Udeesha loved their positive energy, teamwork, and determination as they narrowed down on their final design. Team RTDS received a total of 145 points landing them at 1st place with a whopping lead of 46 points!

    The success of the team boiled down to these four concepts:

    1. Getting a clear picture of the objectives and desired outcome: Team RTDS discussed the objectives and studied the objects that they had to pick up even before finalizing their first design!
    2. Designing with the end-user in mind: This device helps someone with less mobility in their hands. With enthusiasm, one of the girls said, “I only have to move my thumb to operate this device!” During lunch break, her face lit up as she easily picked up her pop can and took a sip!
    3. Keeping on schedule: Team RTDS aimed for simplicity which allowed them to have plenty of time for testing and re-design within the 1.5hr time limit.
    4. Testing and Re-design. Team RTDS based their design on successful devices such as kitchen tongs, and crucible tongs. The girls suggested that the end of the device should have a large surface area with the perimeter studded with hot-glue for gripping objects. In the testing phase, they saw that some objects slipped out of their grasp. They rushed back to add toothpick “teeth” along the perimeter which did the trick!



     The girls had lots of fun and learned important concepts from this design challenge! The event was held in conjunction with International Women’s Day to celebrate women’s achievements throughout history. We know that the girls in Team RTDS have a bright future ahead of them!

    RTDS Technologies Inc.