Validate relay behaviour and de-risk novel protection schemes.
Gain confidence in the performance of critical projects with HIL testing.
Perform closed-loop testing via communication protocols.
Simulate and stream IEC/IEEE 60255-118-1 synchrophasors in real time.
Improve the performance of distribution automation systems and DERMS.
Achieve superior resilience through HIL testing of microgrid protection and control.
Test renewable power plant controllers (PPCs) in a closed loop, including communication delays.
Test controls in a closed loop with simulated high-frequency switching circuits.
Test DERs, motors, loads, and other real power hardware in a controlled environment.
Prevent and survive cyber events via thorough real-time testing.
Validate the performance of novel technologies and improve operator confidence.
Start here to learn about real time simulation and discover the technology that makes hardware-in-the-loop testing possible.
NovaCor™: the powerful, custom-developed hardware platform at the heart of the simulator.
Exchange data with external devices in real time through Ethernet and Network Interface Card.
The most diverse, robust, and accurate real time power system modelling library available.
RSCAD® allows the configuration, execution, and analysis of real-time simulations.
Learn about EMT simulation, the Dommel algorithm, and multi-rate simulation.
Learn how real time simulation supports power system innovation around the globe.
Join our mailing list to get everything “RTDS” in one place: from webinar announcements, industry news, and event details.
Technology updates, conferences, training courses and webinars, and other news.
See what events are on deck at RTDS Technologies.
Check out our schedule for training at our facility in Winnipeg, Canada.
RTDS Technologies changed the power industry forever by introducing the world’s first fully digital real-time power system simulator.
Leaders in their craft & main drivers of our innovation – simulating the grid of tomorrow.
Discover opportunities to join the world-class team at RTDS Technologies.
Easy access to technical papers, product & application information, and more.
Hands-on training opportunities and unparalleled user support.
Accessible, comprehensive equipment maintenance to eliminate downtime.
Video training resources for RTDS Simulator users.
Easy access to technical papers, product & application information, and more.
Hands-on training opportunities and unparalleled user support.
Accessible, comprehensive equipment maintenance to eliminate downtime.
Access our client area with your credentials here.
Higher switching frequencies, improved accuracy and stability, and better hardware efficiency than ever before. Learn more about the Universal Converter Model (UCM), the newest solution for power electronics modelling with the RTDS Simulator, below.
Power electronics-based schemes require small simulation timesteps to properly represent high frequency switching and circuit dynamics. The RTDS Simulator is designed to achieve extremely small timesteps, allowing engineers to flexibly model the behaviour of power electronics (and the AC network) over a large frequency range in real time. Real control hardware can then be connected to the simulated network and tested to significantly reduce risk and improve performance prior to deployment.
The RTDS Simulator’s power electronics models are executed in the Substep environment, which contains fixed-topology converter models based on a groundbreaking predictive switching algorithm. Predictive switching allows the converter models to switch states resistively (rather than using LC switching) while still running at a very small timestep.
The RTDS Simulator’s power electronic models have been finessed so that they can run directly on NovaCor, the simulator’s main processing hardware, rather than external FPGA-based hardware additions. Running power electronics directly on the same powerful multi-core processor – and indeed, with the same software package – that handles the main network simulation has big advantages.
Simulate two- and three-level converters switched at frequencies in the tens of kHz range and test control or power Hardware-in-the-Loop with the simulation.
Simulate LCC, VSC, and MMC-based schemes and comprehensively test the controls for complex systems throughout development and prior to commissioning.
Simulate custom-topology converters at sub-microsecond timesteps and test their controls in the loop with the simulation
© 2023 RTDS Technologies Inc AMETEK. All Rights Reserved.